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The Elements 

  Atomic  Atomic 
Name Symbol Number Mass*

  Atomic  Atomic 
Name Symbol Number Mass*

Actinium Ac  89 (227)
Aluminum Al  13          26.98
Americium Am  95  (243)
Antimony Sb  51      121.8
Argon Ar  18          39.95
Arsenic As  33          74.92
Astatine At  85   (210)
Barium Ba  56      137.3
Berkelium Bk  97 (247)
Beryllium Be   4              9.012
Bismuth Bi  83      209.0
Bohrium Bh 107  (267)
Boron B      5          10.81
Bromine Br  35          79.90
Cadmium Cd  48      112.4
Calcium Ca  20          40.08
Californium Cf  98   (249)
Carbon C      6          12.01
Cerium Ce  58      140.1
Cesium Cs  55      132.9
Chlorine Cl  17          35.45
Chromium Cr  24          52.00
Cobalt Co  27          58.93
Copernicium Cn 112   (285)
Copper Cu  29          63.55
Curium Cm  96   (247)
Darmstadtium Ds 110   (281)
Dubnium Db 105   (262)
Dysprosium Dy  66      162.5
Einsteinium Es  99   (254)
Erbium Er  68      167.3
Europium Eu  63      152.0
Fermium Fm 100   (253)
Flevorium Fl 114  (289)
Fluorine F    9          19.00
Francium Fr  87    (223)
Gadolinium Gd  64      157.3
Gallium Ga  31          69.72
Germanium Ge  32          72.61
Gold Au  79      197.0
Hafnium Hf  72      178.5
Hassium Hs 108   (277)
Helium He   2              4.003
Holmium Ho  67      164.9
Hydrogen H    1              1.008
Indium In  49      114.8
Iodine I  53      126.9
Iridium Ir  77      192.2
Iron Fe  26          55.85
Krypton Kr  36          83.80
Lanthanum La  57      138.9
Lawrencium Lr 103   (257)
Lead Pb  82      207.2
Lithium Li   3              6.941
Livermorium Lv 116  (293)
Lutetium Lu  71      175.0
Magnesium Mg  12          24.31
Manganese Mn  25          54.94
Meitnerium Mt 109    (268)

Mendelevium Md 101    (256)
Mercury Hg  80      200.6
Molybdenum Mo  42          95.94
Moscovium Mc 115  (288)
Neodymium Nd  60      144.2
Neon Ne  10          20.18
Neptunium Np  93   (244)
Nickel Ni  28          58.70
Nihonium Nh 113  (284)
Niobium Nb  41          92.91
Nitrogen N   7          14.01
Nobelium No 102   (253)
Oganesson Og 118  (294)
Osmium Os  76      190.2
Oxygen O    8          16.00
Palladium Pd  46      106.4
Phosphorus P  15          30.97
Platinum Pt  78      195.1
Plutonium Pu  94   (242)
Polonium Po  84   (209)
Potassium K    19          39.10
Praseodymium Pr  59      140.9
Promethium Pm  61   (145)
Protactinium Pa  91   (231)
Radium Ra  88   (226)
Radon Rn  86   (222)
Rhenium Re  75      186.2
Rhodium Rh  45      102.9
Roentgenium Rg 111   (272)
Rubidium Rb  37          85.47
Ruthenium Ru  44      101.1
Rutherfordium Rf 104   (263)
Samarium Sm  62      150.4
Scandium Sc  21          44.96
Seaborgium Sg 106   (266)
Selenium Se  34          78.96
Silicon Si  14          28.09
Silver Ag  47      107.9
Sodium Na  11          22.99
Strontium Sr  38          87.62
Sulfur S    16          32.07
Tantalum Ta  73      180.9
Technetium Tc  43    (98)
Tellurium Te  52      127.6
Tennessine Ts 117  (294)
Terbium Tb  65      158.9
Thallium Tl  81      204.4
Thorium Th  90      232.0
Thulium Tm  69      168.9
Tin Sn  50      118.7
Titanium Ti  22          47.88
Tungsten W  74      183.9
Uranium U    92      238.0
Vanadium V    23          50.94
Xenon Xe  54      131.3
Ytterbium Yb  70      173.0
Yttrium Y    39          88.91
Zinc Zn  30          65.41
Zirconium Zr  40          91.22

*All atomic masses are given to four significant figures. Values in parentheses represent the mass number of the most stable isotope.
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Chemistry is so crucial to an understanding of medicine and biology, environmental science, 
and many areas of engineering and industrial processing that it has become a requirement 

for an increasing number of academic majors. Furthermore, chemical principles lie at the core of 
some of the key societal issues we face in the 21st century—dealing with climate change, finding 
new energy options, and supplying nutrition and curing disease on an ever more populated planet.

SETTING THE STANDARD FOR A CHEMISTRY TEXT
The eighth edition of Chemistry: The Molecular Nature of Matter and Change maintains its 
standard-setting position among general chemistry textbooks by evolving further to meet the 
needs of professor and student. The text still contains the most accurate molecular illustrations, 
consistent step-by-step worked problems, and an extensive collection of end-of-chapter prob-
lems. And changes throughout this edition make the text more readable and succinct, the artwork 
more teachable and modern, and the design more focused and inviting. The three hallmarks that 
have made this text a market leader are now demonstrated in its pages more clearly than ever.

Visualizing Chemical Models—Macroscopic to Molecular
Chemistry deals with observable changes caused by unobservable atomic-scale events, 
requiring an appreciation of a size gap of mind-boggling proportions. One of the text’s goals 
coincides with that of so many instructors: to help students visualize chemical events on the 
molecular scale. Thus, concepts are explained first at the macroscopic level and then from a 
molecular point of view, with pedagogic illustrations always placed next to the discussions to 
bring the point home for today’s visually oriented students.
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Thinking Logically  
to Solve Problems
The problem-solving approach, based on the 
four-step method widely accepted by experts in 
chemical education, is introduced in Chapter 1 
and employed consistently throughout the text. It 
encourages students to plan a logical approach to 
a problem, and only then proceed to solve it. 
Each sample problem includes a check, which 
fosters the habit of “thinking through” both the 
chemical and the quantitative reasonableness 
of the answer. Finally, for practice and 
reinforcement, each sample problem is followed 
immediately by two similar follow-up problems. 
And, Chemistry marries problem solving to 
visualizing models with molecular-scene 
problems, which appear not only in homework 
sets, as in other texts, but also in the running text, 
where they are worked out stepwise.

106   Chapter 3 • Stoichiometry of Formulas and Equations

Sample Problems 3.9–3.11 show how other types of compositional data are used to 
determine chemical formulas.

Problem Analysis of a sample of an ionic compound yields 2.82 g of Na, 4.35 g of Cl, 
and 7.83 g of O. What are the empirical formula and the name of the compound?
Plan This problem is similar to Sample Problem 3.8, except that we are given element 
masses that we must convert into integer subscripts. We first divide each mass by the 
element’s molar mass to find the amount (mol). Then we construct a preliminary 
formula and convert the amounts (mol) to integers.
Solution Finding amount (mol) of each element:

 Amount (mol) of Na = 2.82 g Na ×
1 mol Na

22.99 g Na
= 0.123 mol Na

 Amount (mol) of Cl = 4.35 g Cl ×
1 mol Cl

35.45 g Cl
= 0.123 mol Cl

 Amount (mol) of O = 7.83 g O ×
1 mol O

16.00 g O
= 0.489 mol O

Constructing a preliminary formula: Na0.123Cl0.123O0.489

Converting to integer subscripts (dividing all by the smallest subscript):
Na

 0.123
0.123

Cl 0.123
0.123

O 0.489
0.123 

⟶ Na1.00Cl1.00O3.98 ≈ Na1Cl1O4,    or    NaClO4

The empirical formula is NaClO4; the name  is sodium perchlorate.
Check The numbers of moles seem correct because the masses of Na and Cl are 
slightly more than 0.1 of their molar masses. The mass of O is greatest and its molar 
mass is smallest, so it should have the greatest number of moles. The ratio of 
subscripts, 1/1/4, is the same as the ratio of moles, 0.123/0.123/0.489 (within rounding).
FOLLOW-UP PROBLEMS
3.9A A sample of an unknown compound is found to contain 1.23 g of H, 12.64 g of 
P, and 26.12 g of O. What is the empirical formula and the name of the compound?
3.9B An unknown metal M reacts with sulfur to form a compound with the formula 
M2S3. If 3.12 g of M reacts with 2.88 g of S, what are the names of M and M2S3? [Hint: 
Determine the amount (mol) of S, and use the formula to find the amount (mol) of M.]
SOME SIMILAR PROBLEMS 3.42(b), 3.43(b), 3.46, and 3.47

SAMPLE PROBLEM 3.9
Determining an Empirical Formula from 
Masses of Elements

Molecular Formulas
If we know the molar mass of a compound, we can use the empirical formula to 
obtain the molecular formula, which uses as subscripts the actual numbers of moles 
of each element in 1 mol of compound. For some compounds, such as water (H2O), 
ammonia (NH3), and methane (CH4), the empirical and molecular formulas are identi-
cal, but for many others, the molecular formula is a whole-number multiple of the 
empirical formula. As you saw, hydrogen peroxide has the empirical formula HO. 
Dividing the molar mass of hydrogen peroxide (34.02 g/mol) by the empirical formula 
mass of HO (17.01 g/mol) gives the whole-number multiple:

 Whole-number multiple =
molar mass (g/mol)

empirical formula mass (g/mol)
=

34.02 g/mol
17.01 g/mol

= 2.000 = 2

Multiplying the empirical formula subscripts by 2 gives the molecular formula:
H(1×2)O(1×2) gives H2O2

Since the molar mass of hydrogen peroxide is twice as large as the empirical formula 
mass, the molecular formula has twice the number of atoms as the empirical formula.
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The simplest arrangement consistent with the mass data for carbon oxides I and 
II in our earlier example is that one atom of oxygen combines with one atom of carbon 
in compound I (carbon monoxide) and that two atoms of oxygen combine with one 
atom of carbon in compound II (carbon dioxide):

OCOOC

Carbon oxide I
(carbon monoxide)

Carbon oxide II
(carbon dioxide)

Let’s work through a sample problem that reviews the mass laws.

Problem The scenes below represent an atomic-scale view of a chemical reaction:

Which of the mass laws—mass conservation, definite composition, and/or multiple 
proportions—is (are) illustrated?
Plan From the depictions, we note the numbers, colors, and combinations of atoms 
(spheres) to see which mass laws pertain. If the numbers of each atom are the same before 
and after the reaction, the total mass did not change (mass conservation). If a compound 
forms that always has the same atom ratio, the elements are present in fixed parts by mass 
(definite composition). If the same elements form different compounds and the ratio of the 
atoms of one element that combine with one atom of the other element is a small whole 
number, the ratio of their masses is a small whole number as well (multiple proportions).
Solution There are seven purple and nine green atoms in each circle, so mass is conserved. 
The compound formed has one purple and two green atoms, so it has definite composition. 
Only one compound forms, so the law of multiple proportions does not pertain.
FOLLOW-UP PROBLEMS
2.3A The following scenes represent a chemical change. Which of the mass laws is 
(are) illustrated?

2.3B Which sample(s) best display(s) the fact that compounds of bromine (orange) and 
fluorine (yellow) exhibit the law of multiple proportions? Explain.

A B C

SOME SIMILAR PROBLEMS 2.14 and 2.15

SAMPLE PROBLEM 2.3 Visualizing the Mass Laws
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Applying Ideas to the Real World
As the most practical science, chemistry should have a textbook that highlights its countless 
applications. Moreover, today’s students may enter emerging chemistry-related hybrid fields, 
like biomaterials science or planetary geochemistry, and the text they use should point out the 
relevance of chemical concepts to such related sciences. The Chemical Connections and Tools 
of the Laboratory boxed essays (which include problems for added relevance), the more 
pedagogic margin notes, and the many applications woven into the chapter content are up-to-
date, student-friendly features that are directly related to the neighboring content.

570

CHEMICAL CONNECTIONS TO 
ENVIRONMENTAL ENGINEERING Solutions and Colloids in  

Water Purifcation

Most water destined for human use comes from lakes, rivers, 
reservoirs, or groundwater. Present in this essential resource 

may be soluble toxic organic compounds and high concentrations 
of NO3

− and Fe3+, colloidal clay and microbes, and suspended de-
bris. Let’s see how water is treated to remove these dissolved, 
dispersed, and suspended particles.

Water Treatment Plants
Treating water involves several steps (Figure B13.1):

Step 1. Screening and settling. As water enters the facility, 
screens remove debris, and settling removes sand and other 
 particles.

Step 2. Coagulating. This step and the next two remove col-
loids. These particles have negative surfaces that repel each other. 
Added aluminum sulfate [cake alum; Al2(SO4)3] or iron(III) chlo-
ride (FeCl3), which supply Al3+ or Fe3+ ions that neutralize the 
charges, coagulates the particles through intermolecular forces.

Step 3. Flocculating and sedimenting. Mixing water and floc-
culating agents in large basins causes a fluffy floc to form. Added 
cationic polymers form long-chain bridges between floc particles, 
which grow bigger and flow into other basins, where they form a 
sediment and are removed. Some plants use dissolved air flotation 
(DAF) instead: bubbles forced through the water attach to the floc, 
and the floating mass is skimmed.

Step 4. Filtering. Various filters remove remaining particles. 
In slow sand filters, the water passes through sand and/or gravel of 
increasing particle size. In rapid sand filters, the sand is back-
washed with water, and the colloidal mass is removed. Membrane 
filters (not shown) with pore sizes of 0.1–10 μm are thin tubes 
bundled together inside a vessel. The water is forced into these 
tubes, and the colloid-free filtrate is collected from a large central 
tube. Filtration is very effective at removing microorganisms re-
sistant to disinfectants.

Step 5. Disinfecting. Water sources often contain harmful mi-
croorganisms that are killed by one of three agents:
∙ Chlorine, as aqueous bleach (ClO−) or Cl2, is most common, 

but carcinogenic chlorinated organic compounds can form.
∙ UV light emitted by high-intensity fluorescent tubes disinfects 

by disrupting microorganisms’ DNA.
∙ Ozone (O3) gas is a powerful oxidizing agent.
Sodium fluoride (NaF) to prevent tooth decay and phosphate salts 
to prevent leaching of lead from pipes may then be added.

Step 6 (not shown). Adsorbing onto granular activated car-
bon (GAC). Petroleum and other organic contaminants are re-
moved by adsorption. GAC is a highly porous agent formed by 
“activating” wood, coal, or coconut shells with steam: 1 kg of 
GAC has a surface area of 275 acres!

Water Softening via Ion Exchange
Water with large amounts of 2+ ions, such as Ca2+ and Mg2+, is 
called hard water. Combined with fatty-acid anions in soap, 
these cations form solid deposits on clothes, washing machines, 
and sinks:

Ca2+ (aq) + 2C17H35COONa(aq) ⟶
 soap

(C17H35COO)2Ca(s) + 2Na+(aq)
 insoluble deposit
When a large amount of HCO3

− is present, the cations form scale, 
a carbonate deposit in boilers and hot-water pipes that interferes 
with the transfer of heat:

Ca2+ (aq) + 2HCO3
−(aq) ⟶ CaCO3(s) + CO2(g) + H2O(l)

Removing hard-water cations, called water softening, is done by 
exchanging Na+ ions for Ca2+ and Mg2+ ions. A home system 
for ion exchange contains an insoluble polymer resin with bonded 

Coagulating 
Al2(SO4)3 
and polymers 
added

Cl2

Settling tanks

Valve

Water intake

Screening/
settling

Filtering

Flocculating/
sedimenting

Chlorine added

Disinfecting5

4

32

1

Storage
tank

To users

Figure B13.1 The typical steps in municipal water treatment.
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anionic groups, such as SO3
− or COO−, and Na+ ions for 

charge balance (Figure B13.2). The hard-water cations displace 
the Na+ ions and bind to the anionic groups. When all resin sites 
are occupied, the resin is regenerated with concentrated Na+ solu-
tion that exchanges Na+ ions for bound Ca2+ and Mg2+.

Membrane Processes and Reverse Osmosis
Membranes with 0.0001–0.01 μm pores can remove unwanted 
ions from water. Recall that solutions of different concentrations 
separated by a semipermeable membrane create osmotic pressure. 
In reverse osmosis, a pressure greater than the osmotic pressure 
is applied to the more concentrated solution to force water back 
through the membrane and filter out ions. In homes, toxic heavy-
metal ions, such as Pb2+, Cd2+, and Hg2+, are removed this way. 
On a large scale, reverse osmosis is used for desalination, which 
can convert seawater (40,000 ppm of ions) to drinking water 
(400 ppm) (Figure B13.3).

Wastewater Treatment
Wastewater, used domestic or industrial water, is treated in 
 several ways before being returned to a natural source:
∙ In primary treatment, the water enters a settling basin to re-

move particles.
∙ In biological treatment, bacteria metabolize organic com-

pounds and are then removed by settling.
∙ In advanced treatment, a process is tailored to remove a spe-

cific pollutant. For example, ammonia, which causes excessive 
growth of plants and algae, is removed in two steps:
1.  Nitrification. Certain bacteria oxidize ammonia (electron 

donor) with O2 (electron acceptor) to form nitrate ion:
NH4

+ + 2O2 ⟶ NO−
3 + 2H+ + H2O

2.  Denitrification. Other bacteria oxidize an added compound 
like methanol (CH3OH) using the NO3

−:
5CH3OH + 6NO −

3 ⟶ 3N2 + 5CO2 + 7H2O + 6OH−

Thus, the process converts NH3 in wastewater to N2, which is 
released to the atmosphere.

Problems
B13.1 Briefly answer each of the following: 
(a) Why is cake alum [Al2(SO4)3] added during water purification?
(b) Why is water that contains large amounts of Ca2+ and Mg2+ 
difficult to use for cleaning?
(c) What is the meaning of “reverse” in reverse osmosis?
(d) Why might a water treatment plant use ozone as a disinfectant 
instead of chlorine?
(e) How does passing a saturated NaCl solution through a “spent” 
ion-exchange resin regenerate the resin?
B13.2 Wastewater discharged into a stream by a sugar refinery 
contains 3.55 g of sucrose (C12H22O11) per liter. A government-
sponsored study is testing the feasibility of removing the sugar 
by reverse osmosis. What pressure must be applied to the 
 wastewater solution at 20.°C to produce pure water?

Figure B13.2 Ion exchange to remove hard-water cations.
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Figure B13.3 Reverse osmosis to remove ions. A, Part of a reverse-osmosis permeator. B, Each permeator contains a bundle of hollow fbers 
of semipermeable membrane. C, Pumping seawater at high pressure removes ions, and purer water enters the fbers and is collected.
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In addition to mass spectrometry (Chapter 2) and infrared (IR) 
spectroscopy (Chapter 9), one of the most useful tools for ana-

lyzing organic and biochemical structures is nuclear magnetic 
resonance (NMR) spectroscopy, which measures the molecular 
environments of certain nuclei in a molecule.

Like electrons, several types of nuclei, such as 13C, 19F, 
31P, and 1H, act as if they spin in either of two directions, each 
of which creates a tiny magnetic field. In this discussion, we 
focus primarily on 1H-NMR spectroscopy, which measures 
changes in the nuclei of the most common isotope of hydrogen. 
Oriented randomly, the magnetic fields of all the 1H nuclei in a 
sample of compound, when placed in a strong external mag-
netic field (B0), become aligned either with the external field 
(parallel) or against it (antiparallel). Most nuclei adopt the par-
allel orientation, which is slightly lower in energy. The energy 
difference (ΔE) between the two energy states (spin states) lies 
in the radio-frequency (rf) region of the electromagnetic spec-
trum (Figure B15.1).

When an 1H (blue arrow) in the lower energy (parallel) spin 
state absorbs a photon in the radio-frequency region with an en-
ergy equal to ΔE, it “flips,” in a process called resonance, to the 
higher energy (antiparallel) spin state. The system then re-emits 
that energy, which is detected by the rf receiver of the 1H-NMR 
spectrometer. The ΔE between the two states depends on the ac-
tual magnetic field acting on each 1H nucleus, which is affected 
by the tiny magnetic fields of the electrons of atoms adjacent to 
that nucleus. Thus, the ΔE required for resonance of each 1H nu-
cleus depends on its specific molecular environment—the C at-
oms, electronegative atoms, multiple bonds, and aromatic rings 
around it. 1H nuclei in different molecular environments produce 
different peaks in the 1H-NMR spectrum.

An 1H-NMR spectrum, which is unique for each compound, 
is a series of peaks that represents the resonance as a function of 
the changing magnetic field. The chemical shift of the 1H nuclei 
in a given environment is where a peak appears. Chemical shifts 
are shown relative to that of an added standard, tetramethylsi-
lane [(CH3)4Si, or TMS]. TMS has 12 1H nuclei bonded to four 
C atoms that are bonded to one Si atom in a tetrahedral arrange-
ment, so all 12 are in identical environments and produce only 
one peak.

Figure B15.2 shows the 1H-NMR spectrum of acetone. The six 
1H nuclei of acetone have identical environments: all six are bonded 
to two C atoms that are each bonded to the C atom involved in the 
CO bond. So one peak is produced, but at a different position from 
the TMS peak. The spectrum of dimethoxymethane in Figure B15.3 
shows two peaks in addition to the TMS peak since the 1H nuclei 
have two different evironments. The taller peak is due to the six 1H 
nuclei in the two CH3 groups, and the shorter peak is due to the two 
1H nuclei in the CH2 group. The area under each peak (given as  
a number of chart-paper grid spaces) is proportional to the number  
of 1H nuclei in a given environment. Note that the area ratio is 
20.3/6.8 ≈ 3/1, the same as the ratio of six nuclei in the CH3 groups 
to two in the CH2 group. Thus, by analyzing the chemical shifts and 
peak areas, the chemist learns the type and number of hydrogen  
atoms in the compound.

Nuclear Magnetic Resonance  
(NMR) Spectroscopy

ΔE

Magnetic
field (B0)

Random nuclear spins 
are of equal energy.

Radiation (hν)

(antiparallel)

(parallel)

Aligned spins A spin “flip” results
from absorption of a 
photon with energy 
equal to ΔE (radio- 
frequency region).

Er f  = ΔE

Figure B15.1 The basis of 1H spin resonance.
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Figure B15.2 The 1H-NMR spectrum of acetone. 
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Figure B15.3 The 1H-NMR spectrum of dimethoxymethane.(continued)
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Reinforcing through Review and Practice
A favorite feature, the section summaries that conclude 
every section restate the major ideas concisely and 
immediately (rather than postponing such review until the 
end of the chapter).
 A rich catalog of study aids ends each chapter to help 
students review the content:

∙ Learning Objectives, with section and/or sample prob-
lem numbers, focus on the concepts to understand and 
the skills to master.

∙ Key Terms, boldfaced and defined within the chapter, are listed here by 
section (with page numbers), as well as being defined in the Glossary.

∙ Key Equations and Relationships are highlighted and numbered within the 
chapter and listed here with page numbers.

∙ Brief Solutions to Follow-up Problems triple the number of worked prob-
lems by providing multistep calculations at the end of the chapter, rather 
than just numerical answers at the back of the book.

Summary of Section 9.1
› Nearly all naturally occurring substances consist of atoms or ions bonded to others. Chemical 

bonding allows atoms to lower their energy.
› Ionic bonding occurs when metal atoms transfer electrons to nonmetal atoms, and the 

resulting ions attract each other and form an ionic solid.
› Covalent bonding is most common between nonmetal atoms and usually results in individual 

molecules. Bonded atoms share one or more pairs of electrons that are localized between them.
› Metallic bonding occurs when many metal atoms pool their valence electrons into a 

delocalized electron “sea” that holds all the atoms in the sample together.
› The Lewis electron-dot symbol of a main-group atom shows valence electrons as dots 

surrounding the element symbol.
› The octet rule says that, when bonding, many atoms lose, gain, or share electrons to attain a 

filled outer level of eight (or two) electrons.
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alloy (538)
amino acid (539)
boiling point elevation  

(ΔTb) (559)
charge density (545)
colligative property (557)
colloid (568)
desalination (571)
dipole–induced dipole  

force (535)
double helix (543)
electrolyte (557)
entropy (S) (547)
fractional distillation (564)

freezing point depression 
(ΔTf) (561)

hard water (570)
heat of hydration (ΔHhydr) (545)
heat of solution (ΔHsoln) (544)
Henry’s law (551)
hydration (545)
hydration shell (534)
ideal solution (558)
ion exchange (570)
ionic atmosphere (565)
ion–induced dipole force (534)
like-dissolves-like rule (534)
lipid bilayer (542)

soap (541)
solubility (S) (534)
solute (534)
solvation (545)
solvent (534)
supersaturated solution (549)
suspension (568)
Tyndall effect (569)
unsaturated solution (549)
vapor pressure lowering  

(ΔP) (558)
volume percent [% (v/v)] (554)
wastewater (571)
water softening (570)

mass percent [% (w/w)] (554)
miscible (534)
molality (m) (553)
mole fraction (X) (554)
mononucleotide (543)
nonelectrolyte (557)
nucleic acid (542)
osmosis (562)
osmotic pressure (Π) (562)
protein (539)
Raoult’s law (558)
reverse osmosis (571)
saturated solution (549)
semipermeable membrane (562)

Page numbers appear in parentheses.Key Terms

Understand These Concepts
 1. The quantitative meaning of solubility (§13.1)
 2. The major types of intermolecular forces in solution and 

their relative strengths (§13.1)
 3. How the like-dissolves-like rule depends on intermolecular 

forces (§13.1)
 4. Why gases have relatively low solubilities in water (§13.1)
 5. General characteristics of solutions formed by various com-

binations of gases, liquids, and solids (§13.1)
 6. How intermolecular forces stabilize the structures of pro-

teins, the cell membrane, and DNA (§13.2)
 7. The enthalpy components of a solution cycle and their effect 

on ΔHsoln (§13.3)
 8. The dependence of ΔHhydr on ionic charge density and the 

factors that determine whether ionic solution processes are 
exothermic or endothermic (§13.3)

 9. The meaning of entropy and how the balance between the 
change in enthalpy and the change in entropy governs the 
solution process (§13.3)

 10. The distinctions among saturated, unsaturated, and supersat-
urated solutions, and the equilibrium nature of a saturated 
solution (§13.4)

 11. The relation between temperature and the solubility of solids 
(§13.4)

 12. Why the solubility of gases in water decreases with a rise in 
temperature (§13.4)

 13. The effect of gas pressure on solubility and its quantitative 
expression as Henry’s law (§13.4)

 14. The meaning of molarity, molality, mole fraction, and parts 
by mass or by volume of a solution, and how to convert 
among them (§13.5)

 15. The distinction between electrolytes and nonelectrolytes in 
solution (§13.6)

 16. The four colligative properties and their dependence on 
number of dissolved particles (§13.6)

 17. Ideal solutions and the importance of Raoult’s law (§13.6)
 18. How the phase diagram of a solution differs from that of the 

pure solvent (§13.6)
 19. Why the vapor over a solution of a volatile nonelectrolyte is 

richer in the more volatile component (§13.6)
 20. Why strong electrolyte solutions are not ideal and the mean-

ings of the van’t Hoff factor and ionic atmosphere (§13.6)
 21. How particle size distinguishes suspensions, colloids, and 

solutions (§13.7)
 22. How colloidal behavior is demonstrated by the Tyndall 

 effect and Brownian motion (§13.7)
Master These Skills
 1. Predicting relative solubilities from intermolecular forces 

(SP 13.1)
 2. Calculating the heat of solution for an ionic compound 

(SP 13.2)
 3. Using Henry’s law to calculate the solubility of a gas (SP 13.3)
 4. Expressing concentration in terms of molality, parts by 

mass, parts by volume, and mole fraction (SPs 13.4, 13.5)
 5. Interconverting among the various terms for expressing con-

centration (SP 13.6)
 6. Using Raoult’s law to calculate the vapor pressure lowering 

of a solution (SP 13.7)
 7. Determining boiling and freezing points of a solution (SP 13.8)
 8. Using a colligative property to calculate the molar mass of 

a solute (SP 13.9)
 9. Calculating the composition of vapor over a solution of 

 volatile nonelectrolyte (§13.6)
 10. Calculating the van’t Hoff factor (i) from the magnitude of 

a colligative property (§13.6)
 11. Using a depiction to determine colligative properties (SP 13.10)

CHAPTER REVIEW GUIDE

Relevant section (§) and/or sample problem (SP) numbers  appear in parentheses. Learning Objectives

13.1 Dividing the general heat of solution into component 
 enthalpies (544):

ΔHsoln = ΔHsolute + ΔHsolvent + ΔHmix

13.2 Dividing the heat of solution of an ionic compound in water 
into component enthalpies (545):

ΔHsoln = ΔHlattice + ΔHhydr of the ions

Page numbers appear in parentheses.Key Equations and Relationships
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13.3 Relating gas solubility to its partial pressure (Henry’s 
law) (551):

Sgas = kH × Pgas

13.4 Defining concentration in terms of molarity (552):

Molarity (M) =
amount (mol) of solute
volume (L) of solution

13.5 Defining concentration in terms of molality (553):

Molality (m) =
amount (mol) of solute

mass (kg) of solvent

13.6 Defining concentration in terms of mass percent (554):

Mass percent [% (w/w)] =
mass of solute

mass of solution
× 100

13.7 Defining concentration in terms of volume percent (554):

Volume percent [% (v/v)] =
volume of solute

volume of solution
× 100

13.8 Defining concentration in terms of mole fraction (554):
Mole fraction (X)

=
amount (mol) of solute

amount (mol) of solute + amount (mol) of solvent
13.9 Expressing the relationship between the vapor pressure of 
solvent above a solution and its mole fraction in the solution 
(Raoult’s law) (558):

Psolvent = Xsolvent × P°solvent

13.10 Calculating the vapor pressure lowering due to solute (558):
ΔP = Xsolute × P°solvent

13.11 Calculating the boiling point elevation of a solution (560):
ΔTb = Kbm

13.12 Calculating the freezing point depression of a solution (561):
ΔTf = Kfm

13.13 Calculating the osmotic pressure of a solution (562):

Π =
nsolute

Vsoln
 RT = MRT

13.1A (a) 1-Butanol has one OH group/molecule, while 
1,4-butanediol has two OH groups/molecule. 1,4-Butanediol 
is more soluble in water because it can form more H bonds.
(b) Chloroform is more soluble in water because of dipole-
dipole forces between the polar CHCl3 molecules and water. 
The forces between nonpolar CCl4 molecules and water are 
weaker dipole–induced dipole forces, which do not effectively 
replace H bonds between water molecules.

13.1B (a) Chloroform dissolves more chloromethane due to 
similar dipole-dipole forces between the polar molecules of these 
two substances. CH3Cl molecules do not exhibit H bonding and 
so do not effectively replace H bonds between methanol molecules.
(b) Hexane dissolves more pentanol due to dispersion forces 
between the hydrocarbon chains in each molecule.

13.2A From Equation 13.2, we have
ΔHsoln of KNO3 = ΔHlattice of KNO3

 + (ΔHhydr of K+ + ΔHhydr of NO3
−)

34.89 kJ/mol = 685 kJ/mol + (ΔHhydr of K+ + ΔHhydr of NO3
−)

ΔHhydr of K+ + ΔHhydr of NO3
− = 34.89 kJ/mol − 685 kJ/mol

 = −650. kJ/mol

13.2B From Equation 13.2, we have
ΔHsoln of NaCN = ΔHlattice of NaCN

+ (ΔHhydr of Na+ + ΔHhydr of CN−)
1.21 kJ/mol = 766 kJ/mol + (−410. kJ/mol + ΔHhydr of CN−)
ΔHhydr of CN− = 1.21 kJ/mol − 766 kJ/mol + 410. kJ/mol
 = −355 kJ/mol

13.3A The partial pressure of N2 in air is the volume percent 
 divided by 100 times the total pressure (Dalton’s law, Section 5.4): 
PN2 = 0.78 × 1 atm = 0.78 atm.
 Sgas = kH × Pgas

 SN2
 = (7×10−4 mol/L·atm)(0.78 atm)

 = 5×10−4 mol/L

13.3B In a mixture of gases, the volume percent of a gas divided 
by 100 times the total pressure equals the gas’s partial pressure 
(Dalton’s law, Section 5.4): 
Pgas = 0.40 × 1.2 atm = 0.48 atm.

kH =
Sgas

Pgas
=

1.2×10−2 mol/L
0.48 atm

= 2.5×10−2 mol/L·atm

13.4A Convert mass (g) of ethanol to kg, multiply by the molal-
ity to obtain amount (mol) of glucose, and then multiply amount 
(mol) of glucose by the molar mass to obtain mass of glucose.
Amount (mol) of glucose

= 563 g ethanol ×
1 kg
103 g

×
2.40×10−2 mol glucose

1 kg ethanol
= 1.35×10−2 mol glucose

Mass (g) glucose = 1.35×10−2 mol C6H12O6 ×
180. 16 g C6H12O6

1 mol C6H12O6

 = 2.43 g glucose

13.4B Convert mass (g) of I2 to amount (mol) and amount (mol) 
of (CH3CH2)2O to mass (kg). Then divide moles of I2 by kg of 
(CH3CH2)2O.

Amount (mol) of I2 = 15.20 g I2 ×
1 mol I2

253.8 g I2

 = 5.989×10−2 mol I2

Mass (kg) of (CH3CH2)2O

= 1.33 mol (CH3CH2)2O ×
74.12 g (CH3CH2)2 

O
1 mol (CH3CH2)2O

×
1 kg
103 g

= 9.86×10−2 kg (CH3CH2)
2 

O

Molality (m) =
5.989×10−2 mol

9.86×10−2 kg
= 0.607 m

BRIEF SOLUTIONS TO FOLLOW-UP PROBLEMS
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Finally, an exceptionally large number 
of qualitative, quantitative, and 
molecular-scene problems end each 
chapter. Four types of problems are 
presented—three by chapter section, 
with comprehensive problems 
following:

∙ Concept Review Questions test 
qualitative understanding of key 
ideas.

∙ Skill-Building Exercises are 
grouped in similar pairs, with one 
of each pair answered in the back 
of the book. A group of similar 
exercises may begin with explicit 
steps and increase in difficulty, 
gradually weaning the student from 
the need for multistep directions.

∙ Problems in Context apply the 
skills learned in the skill-building 
exercises to interesting scenarios, 
including realistic examples dealing 
with industry, medicine, and the 
environment.

∙ Comprehensive Problems, mostly 
based on realistic applications, are 
more challenging and rely on mate-
rial from any section of the current 
chapter or any previous chapter.

Problems with colored numbers are answered in Appendix E and 
worked in detail in the Student Solutions Manual. Problem sections 
match those in the text and give the numbers of relevant sample 
problems. Most ofer Concept Review Questions, Skill-Building Exer-
cises (grouped in pairs covering the same concept), and Problems in 
Context. The Comprehensive Problems are based on material from 
any section or previous chapter.

Depicting Molecules and Ions with Lewis Structures
(Sample Problems 10.1 to 10.5)

Concept Review Questions
10.1 Which of these atoms cannot serve as a central atom in a 
Lewis structure: (a) O; (b) He; (c) F; (d) H; (e) P? Explain. 
10.2 When is a resonance hybrid needed to adequately depict the 
bonding in a molecule? Using NO2 as an example, explain how a 
resonance hybrid is consistent with the actual bond length, bond 
strength, and bond order.
10.3 In which of these structures does X obey the octet rule? 

X

(a) (b) (c) (d) (e) (f) (g) (h)

X XX X XX X
2−

10.4 What is required for an atom to expand its valence shell? 
Which of the following atoms can expand its valence shell: F, S, 
H, Al, Se, Cl?

Skill-Building Exercises (grouped in similar pairs)
10.5 Draw a Lewis structure for (a) SiF4; (b) SeCl2; (c) COF2  
(C is the central atom). 
10.6 Draw a Lewis structure for (a) PH4

+; (b) C2F4; (c) SbH3.

10.7 Draw a Lewis structure for (a) PF3; (b) H2CO3 (both H atoms 
are attached to O atoms); (c) CS2. 
10.8 Draw a Lewis structure for (a) CH4S; (b) S2Cl2; (c) CHCl3.

10.9 Draw Lewis structures of all the important resonance forms 
of (a) NO2

+; (b) NO2F (N is central). 
10.10 Draw Lewis structures of all the important resonance forms 
of (a) HNO3 (HONO2); (b) HAsO4

2− (HOAsO3
2−).

10.11 Draw Lewis structures of all the important resonance forms 
of (a) N3

−; (b) NO2
−. 

10.12 Draw Lewis structures of all the important resonance forms 
of (a) HCO2

− (H is attached to C); (b) HBrO4 (HOBrO3).

10.13 Draw the Lewis structure with lowest formal charges,  
and determine the charge of each atom in (a) IF5; (b) AlH4

−. 
10.14 Draw the Lewis structure with lowest formal charges, and 
determine the charge of each atom in (a) OCS; (b) NO.

10.15 Draw the Lewis structure with lowest formal charges,  
and determine the charge of each atom in (a) CN−; (b) ClO−. 
10.16 Draw the Lewis structure with lowest formal charges, and 
determine the charge of each atom in (a) ClF2

+; (b) ClNO.

10.17 Draw a Lewis structure for a resonance form of each ion 
with the lowest possible formal charges, show the charges, and 
give oxidation numbers of the atoms: (a) BrO3

−; (b) SO3
2−. 

10.18 Draw a Lewis structure for a resonance form of each ion 
with the lowest possible formal charges, show the charges, and 
give oxidation numbers of the atoms: (a) AsO4

3−; (b) ClO2
−.

10.19 These species do not obey the octet rule. Draw a Lewis 
structure for each, and state the type of octet-rule exception: 
(a) BH3  (b) AsF4

−  (c) SeCl4

10.20 These species do not obey the octet rule. Draw a Lewis 
structure for each, and state the type of octet-rule exception:
(a) PF6

−  (b) ClO3  (c) H3PO3 (one PH bond)

10.21 These species do not obey the octet rule. Draw a Lewis 
structure for each, and state the type of octet-rule exception: 
(a) BrF3  (b) ICl2

−  (c) BeF2

10.22 These species do not obey the octet rule. Draw a Lewis 
structure for each, and state the type of octet-rule exception:
(a) O3

−  (b) XeF2  (c) SbF4
−

Problems in Context
10.23 Molten beryllium chloride reacts with chloride ion from 
molten NaCl to form the BeCl4

2− ion, in which the Be atom at-
tains an octet. Show the net ionic reaction with Lewis 
structures. 

10.24 Despite many attempts, the perbromate ion ( BrO4
−) was not 

prepared in the laboratory until about 1970. (In fact, articles were 
published explaining theoretically why it could never be pre-
pared!) Draw a Lewis structure for BrO4

− in which all atoms have 
lowest formal charges.

10.25 Cryolite (Na3AlF6) is an indispensable component in the 
electrochemical production of aluminum. Draw a Lewis structure 
for the AlF6

3− ion.

10.26 Phosgene is a colorless, highly toxic gas that was employed 
against troops in World War I and is used today as a key reactant 
in organic syntheses. From the following resonance structures, 
select the one with the lowest formal charges: 

C

O

ClCl
C

O

ClCl
A B

C

O

ClCl
C

Valence-Shell Electron-Pair Repulsion (VSEPR) Theory
(Sample Problems 10.6 to 10.8)

Concept Review Questions
10.27 If you know the formula of a molecule or ion, what is the 
first step in predicting its shape?

10.28 In what situation is the name of the molecular shape the 
same as the name of the electron-group arrangement? 

10.29 Which of the following numbers of electron groups can 
give rise to a bent (V shaped) molecule: two, three, four, five, six? 
Draw an example for each case, showing the shape classification 
(AXmEn) and the ideal bond angle.

10.30 Name all the molecular shapes that have a tetrahedral 
 electron-group arrangement. 

PROBLEMS
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Comprehensive Problems
 Helium is the lightest noble gas and the second most abun-

dant element (after hydrogen) in the universe.
(a) The radius of a helium atom is 3.1×10−11 m; the radius of its 
nucleus is 2.5×10−15 m. What fraction of the spherical atomic 
volume is occupied by the nucleus (V of a sphere = 4

3πr3)?
(b) The mass of a helium-4 atom is 6.64648×10−24 g, and each of 
its two electrons has a mass of 9.10939×10−28 g. What fraction of 
this atom’s mass is contributed by its nucleus?

 From the following ions (with their radii in pm), choose the 
pair that forms the strongest ionic bond and the pair that forms the 
weakest:
Ion: Mg2+ K+ Rb+ Ba2+ Cl− O2− I−

Radius: 72 138 152 135 181 140 220
 Give the molecular mass of each compound depicted below, 

and provide a correct name for any that are named incorrectly.

monosulfur
dichloride

Br F

S

Cl

P

Cl

NO
dinitride
pentoxide

boron
fluoride

phosphorus
trichloride

(a) (b)

(d)(c)



OPTIMIZING THE TEXT
The modern chemistry student’s learning experience is changing dramatically. To address the changes that students face, a 
modern text partnered with a suite of robust digital tools must continue to evolve. With each edition, students and instructors 
alike have been involved in refining this text. From one-on-one interviews, focus groups, and symposia, as well as extensive 
chapter reviews and class tests, we learned that everyone praises the pioneering molecular art, the stepwise problem-solving 
approach, the abundant mix of qualitative, quantitative, and applied end-of-chapter problems, and the rigorous and student-
friendly coverage of mainstream topics.

Global Changes to Every Chapter
Our revision for the eighth edition focused on continued optimization of the text. To aid us in this process, we were able to 
use data from literally thousands of student responses to questions in LearnSmart, the adaptive learning system that assesses 
student knowledge of course content. The 
data, such as average time spent answering 
each question and the percentage of stu-
dents who correctly answered the question 
on the first attempt, revealed the learning 
objectives that students found particularly 
difficult. We utilized several approaches to 
present these difficult concepts in a clearer, 
more straightforward way in the eighth edi-
tion of Chemistry: The Molecular Nature of 
Matter and Change.
Making the concepts clearer through 
digital learning resources. Students will 
be able to access over 2,000 digital learning 
resources throughout this text’s SmartBook. 
These learning resources present summaries 
of concepts and worked examples, including 
over 400 videos of chemistry instructors 
solving problems or modeling concepts that 
students can view over and over again. Thus, 
students can have an “office hour” moment 
at any time. 

NEW! Student Hot Spot
We are very pleased to incorporate real stu-
dent data points and input, derived from 
thousands of our LearnSmart users, to help 
guide our revision. LearnSmart Heat Maps 
provided a quick visual snapshot of usage of 
portions of the text and the relative difficulty 
students experienced in mastering the con-
tent. With these data, we were able to both 
hone our text content when needed and, for 
particularly challenging concepts, point stu-
dents to the learning resources that can eluci-
date and reinforce those concepts. You’ll see 
these marginal features throughout the text. 
Students should log into Connect and view 
the resources through our SmartBook.

Solution Finding the mass (kg) of uranium in 102 kg of pitchblende:

 Mass (kg) of uranium = mass (kg) of pitchblende ×
mass (kg) of uranium in pitchblende

mass (kg) of pitchblende

 = 102 kg pitchblende ×
71.4 kg uranium

84.2 kg pitchblende
= 86.5 kg uranium

Converting the mass of uranium from kg to g:

Mass (g) of uranium = 86.5 kg uranium × 
1000 g
 1 kg

 =  8.65×104 g uranium

Finding the mass (in kg) of oxygen in 102 kg of pitchblende:
Mass (kg) of oxygen = mass (kg) of pitchblende − mass (kg) of uranium

= 102 kg − 86.5 kg = 15.5 kg oxygen
Converting the mass of oxygen from kg to g:

Mass (g) of oxygen = 15.5 kg oxygen × 
1000 g
 1 kg

= 1.55×104 g oxygen

Check The analysis showed that most of the mass of pitchblende is due to uranium, so 
the large mass of uranium makes sense. Rounding off to check the math gives

∼100 kg pitchblende × 
70
85

 = 82 kg uranium

FOLLOW-UP PROBLEMS
2.2A The mineral “fool’s gold” does not contain any gold; instead it is a compound 
composed only of the elements iron and sulfur. A 110.0-g sample of fool’s gold 
contains 51.2 g of iron. What mass of sulfur is in a sample of fool’s gold that contains 
86.2 g of iron?
2.2B Silver bromide is the light-sensitive compound coated onto black-and-white film. A 
26.8-g sample contains 15.4 g of silver, with bromine as the only other element. How 
many grams of each element are on a roll of film that contains 3.57 g of silver bromide?
SOME SIMILAR PROBLEMS 2.22–2.25

Student data indicate that you may struggle with 
using mass fraction to calculate the mass of an 
element in a compound. Access the Smartbook to 
view additional Learning Resources on this topic.

Student Hot Spot
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∙ Chapter 6 has a clearer and more detailed discussion on 
pressure-volume work and a revised sample problem on 
the calorimetric determination of heat of combustion. Also 
included are new end-of-chapter problems on the calcula-
tion of enthalpy change for an aqueous reaction and deter-
mination of heat of combustion with bomb calorimetry.

∙ Chapter 7 contains a new table summarizing the relation-
ships between the quantum numbers and orbitals for the 
first four main energy levels.

∙ Chapter 8 contains a new figure on electron spin; orbital 
diagrams have been added to the solutions of several sam-
ple problems.

∙ Chapter 9 has improvements to several figures, a more 
detailed discussion of relationship between difference in 
electronegativity and ionic character, and some new follow-
up problems.

∙ Chapter 10 includes more detailed examples of depicting 
molecules with double bonds and ions with Lewis struc-
tures. Sample and follow-up problems have been revised 
to provide more opportunities to calculate formal charges 
and use those to evaluate resonance structures.

∙ Chapter 11 has new art to illustrate formation of sigma 
and pi bonds and a new figure to show the placement of 
lone pairs in hybrid orbitals.

∙ Chapter 12 includes additional information about viscosity 
and intermolecular forces.

∙ Chapter 13 includes a more challenging sample problem 
on Henry’s law, as well as revisions to several follow-up 
problems. There are new problems on the calculation of 
molar mass from freezing point depression.

∙ Chapter 15 incorporates new art to make nomenclature 
clearer and a revised figure to show the key stages in pro-
tein synthesis.

∙ Chapter 16 has a revised sample problem using the first-order 
integrated rate law, a revised figure on reaction mechanisms, 
and a new molecular scene problem on first-order reactions.

∙ Chapter 17 contains a revised table on concentration ratios 
in an equilibrium system and two new sample problems, 
one on finding the equilibrium constant for an overall reac-
tion, and the other on converting between Kp and Kc.

∙ Chapter 18 has a new table on magnitude of Ka and per-
cent dissociation and two revised sample problems.

∙ Chapter 19 has a revised sample problem on buffer pH 
that reflects a more realistic lab procedure, a new molecu-
lar scene problem involving buffer solutions, a clearer 
 presentation of pH calculations during acid-base titrations, 
and revised figures of pH titration curves. The section on 
acid-base indicators has been expanded, including the 
addition of a new figure about choosing an indicator for 
each type of acid-base titration. The discussion of aqueous 
solutions of metal sulfides was simplified.

∙ Chapter 20 incorporates a new table that summarizes  
Q, K, ΔG, and reaction spontaneity.

∙ Chapter 21 has several revised follow-up problems.
∙ Chapter 23 has a new figure illustrating chelate complex ions 

and several revised figures. A new equation for calculating the 
charge of the metal ion in a complex ion has been added.

Applying ideas with enhanced problems throughout the 
chapters. The much admired four-part problem-solving 
format (plan, solution, check, follow-up) is retained in the 
eighth edition, in both data-based and molecular-scene 
Sample Problems. Two Follow-up Problems are included 
with each sample problem, as well as a list of Similar Prob-
lems within the end-of-chapter problem set. Brief Solutions 
for all of the follow-up problems appear at the end of each 
chapter (rather than providing just a numerical answer in a 
distant end-of-book appendix, as is typical). The eighth edi-
tion has over 250 sample problems and over 500 follow-up 
problems. In almost every chapter, several sample and  
follow-up problems (and their brief solutions) were revised 
in this edition with two goals in mind. We sought to provide 
students with a variety of problems that would clearly eluci-
date concepts and demonstrate problem solving techniques, 
while giving students the opportunity to be challenged and 
gain competence. We also included more intermediate steps 
in the solutions to both sample and follow-up problems so 
that students could more easily follow the solutions.

Re-learning ideas with annotated illustrations. The inno-
vative three-level figures and other art that raised the bar for 
molecular visualization in chemistry textbooks is still pres-
ent. Several existing figures have been revised and several 
new ones added to create an even better teaching tool. We 
continue to streamline figure legends by placing their content 
into clarifying annotations with the figures themselves.

Mastering the content with abundant end-of-chapter 
problem sets. New problems were added to several chapter 
problem sets, providing students and teachers with abundant 
choices in a wide range of difficulty and real-life scenarios. 
The problem sets are more extensive than in most other texts. 

Content Changes to Individual Chapters
In addition to the general optimization of concept explana-
tions and problem solutions throughout the text, specific 
improvements were made to most chapters:

∙ Chapter 1 has a revised table of decimal prefixes and SI 
units to make conversion among SI units clearer, a revised 
discussion on intensive and extensive properties, and a 
revised sample problem on density.

∙ Chapter 2 includes revised sample problems on mass per-
cent and naming of compounds.

∙ Chapter 3 has several new end-of-chapter problems: one 
new problem on the determination of a molecular formula, 
two new problems on writing a balanced reaction and deter-
mining the limiting reactant from molecular scenes, and two 
new stoichiometric problems involving limiting reactants.

∙ Chapter 4 includes a new figure illustrating the activity 
series of the halogens. Sample problems on stoichiometry 
in precipitation and acid-base reactions were revised to 
include reactions that do not have 1:1 mole ratios.

∙ Chapter 5 has two revised sample problems that provide 
students with additional opportunities for pressure unit con-
versions and stoichiometry calculations for gas reactions.



theories (11), intermolecular forces in liquids and solids (12), 
and solutions (13). Immediate applications of these concepts 
appear in the discussions of periodic patterns in main-group 
chemistry (Chapter 14) and in the survey of organic chemistry 
(Chapter 15). Some instructors have also brought forward the 
coverage of transition elements and coordination compounds 
(23) as further applications of bonding concepts. (Of course, 
Chapters 14, 15, and 23 can just as easily remain in their more 
traditional placement later in the course.)

For courses that emphasize biological/medical applica-
tions, many chapters highlight these topics, including the 
role of intermolecular forces in biomolecular structure 
(12), the chemistry of polysaccharides, proteins, and 
nucleic acids (including protein synthesis, DNA replica-
tion, and DNA sequencing) (15), as well as introductions to 
enzyme catalysis (16), biochemical pathways (17), and 
trace elements in protein function (23).

For courses that stress engineering applications of phys-
ical chemistry topics, Chapters 16 through 21 cover kinet-
ics (16), equilibrium in gases (17), acids and bases (18), and 
aqueous ionic systems (19) and entropy and free energy 
(20) as they apply to electrochemical systems (21), all in 
preparation for coverage of the elements in geochemical 
cycles, metallurgy, and industry in Chapter 22.

McGraw-Hill Create™ is another way to implement inno-
vative chapter presentation. With Create, you can easily 
rearrange chapters, combine material from other content 
sources, and quickly upload content you have written, such 
as your course syllabus or teaching notes. Find the content 
you need in Create by searching through thousands of lead-
ing McGraw-Hill textbooks. Create even allows you to per-
sonalize your book’s appearance by selecting the cover and 
adding your name, school, and course information. Order a 
Create book, and you’ll receive a complimentary print 
review copy in 3–5 business days or a complimentary elec-
tronic review copy (eComp) via e-mail in minutes. Go to 
www.mcgrawhillcreate.com today and register to experi-
ence how McGraw-Hill Create empowers you to teach your 
students your way. www.mcgrawhillcreate.com

McGraw-Hill Tegrity® records and distributes your class 
lecture with just a click of a button. Students can view it 
anytime and anywhere via computer, iPod, or mobile device. 
Tegrity indexes as it records your PowerPoint® presenta-
tions and anything shown on your computer, so students can 
use key words to find exactly what they want to study. 
 Tegrity is available as an integrated feature of McGraw-Hill 
Connect® Chemistry and as a stand-alone product.

∙ Chapter 24 has a new table summarizing changes in mass 
and atomic numbers during radioactive decay; a table on sta-
bility of even vs. odd numbers of nucleons has been revised. 
The discussion about mode of decay and neutron/proton ratio 
has been expanded.

Addition of Advanced Topics
In this special version of the 8th edition, advanced topics 
have been added to three chapters for use in classes in which 
a deeper and more rigorous level of discussion is appropri-
ate. Problems on these advanced topics have been added to 
the end-of-chapter problem sets and to the online homework 
question bank.

∙ Chapter 7 includes an expanded discussion on the develop-
ment of the Schrödinger equation and the particle-in-a-box 
model. A new sample problem gives students an opportunity 
to apply the particle-in-a-box model to electron transitions.

∙ Chapter 16 incorporates the calculus involved in the der-
ivation of the integrated rate laws for zero-, first-, and 
second-order reactions. Also now included are discussions 
of pseudo-first-order reactions, steady-state approximation, 
and the Michaelis-Menten equation for enzyme kinetics.

∙ Chapter 20 has a significantly expanded section on 
entropy. The calculations of entropy changes during iso-
thermal gas expansion or contraction, phase changes, and 
changes in temperature have been added to enhance the 
current content; three new sample problems demonstrating 
these entropy change calculations are included.

Innovative Topic and Chapter  
Presentation
While the topic sequence coincides with that used in most 
mainstream courses, built-in flexibility allows a wide range 
of differing course structures:

For courses that follow their own topic sequence, the 
general presentation, with its many section and subsection 
breaks and bulleted lists, allows topics to be rearranged, or 
even deleted, with minimal loss of continuity.

For courses that present several chapters, or topics 
within chapters, in different orders:

∙ Redox balancing by the oxidation-number method (formerly 
covered in Chapter 4) has been removed from the text, and 
the half-reaction method is covered with electrochemistry in 
Chapter 21, but it can easily be taught with Chapter 4.

∙ Gases (Chapter 5) can be covered in sequence to explore 
the mathematical modeling of physical behavior or, with 
no loss of continuity, just before liquids and solids (Chap-
ter 12) to show the effects of intermolecular forces on the 
three states of matter.

For courses that use an atoms-first approach for some of 
the material, Chapters 7 through 13 move smoothly from 
quantum theory (7) through electron configuration (8), bond-
ing models (9), molecular shape (10), VB and MO bonding 
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McGraw-Hill Connect®   
Learn Without Limits
Connect is a teaching and learning platform 
that is proven to deliver better results for 
students and instructors. 

Connect empowers students by continually 
adapting to deliver precisely what they  
need, when they need it, and how they need 
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Connect Insight® 
Connect Insight is Connect’s new one- 
of-a-kind visual analytics dashboard that  
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tailors that content to the needs of the individual. 
SmartBook’s adaptive technology provides precise, 
personalized instruction on what the student 
should do next, guiding the student to master  
and remember key concepts, targeting gaps in 
knowledge and offering customized feedback,  
and driving the student toward comprehension  
and retention of the subject matter. Available on 
tablets, SmartBook puts learning at the student’s 
fingertips—anywhere, anytime.

Adaptive
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ADDITIONAL INSTRUCTOR AND STUDENT RESOURCES FOR YOUR COURSE!

MCGRAW-HILL CONNECT CHEMISTRY 
A robust set of questions, problems, and interactive fig-
ures are presented and aligned with the textbook’s learn-
ing goals. The integration of ChemDraw by PerkinElmer, 
the industry standard in chemical drawing software, 
allows students to create accurate chemical structures in 
their online homework assignments. As an instructor, you 
can edit existing questions and write entirely new prob-
lems. Track individual student performance—by ques-
tion, assignment, or in relation to the class overall—with 
detailed grade reports. Integrate grade reports easily with 
Learning Management Systems (LMS), such as WebCT 
and Blackboard—and much more. Also available within 
Connect, our adaptive SmartBook has been supplemented 
with additional learning resources tied to each learning 
objective to provide point-in-time help to students who 
need it. To learn more, visit www.mheducation.com.

Instructors have access to the following instructor 
resources through Connect. 

∙ Art Full-color digital files of all illustrations, photos, and tables in the book can be readily incorporated into lecture pre-
sentations, exams, or custom-made classroom materials. In addition, all files have been inserted into PowerPoint slides for 
ease of lecture preparation.

∙ Animations Numerous full-color animations illustrating important processes are also provided. Harness the visual impact 
of concepts in motion by importing these files into classroom presentations or online course materials. 

∙  PowerPoint Lecture Outlines Ready-made presentations that combine art and lecture notes are  provided for each 
chapter of the text.

∙  Computerized Test Bank Over 2300 test questions that accompany Chemistry: The Molecular Nature of Matter and Change 
are available utilizing the industry-leading test generation software TestGen. These same questions are also available and 
assignable through Connect for online tests.

∙  Instructor’s Solutions Manual This supplement, prepared by Mara Vorachek-Warren of St. Charles Community College, 
contains complete, worked-out solutions for all the end-of-chapter problems in the text.

Fueled by LearnSmart—the most widely used and 
intelligent adaptive learning resource—LearnSmart 
Prep is designed to get students ready for a forthcom-
ing course by quickly and effectively addressing gaps 
in prerequisite knowledge that may cause problems 
down the road. By distinguishing what students know 
from what they don’t, and honing in on concepts they 
are most likely to forget, LearnSmart Prep maintains 
a continuously adapting learning path individualized 
for each student, and tailors content to focus on what 
the student needs to master in order to have a success-
ful start in the new class.



THE VIRTUAL LAB EXPERIENCE
Based on the same world-class, superbly adaptive technology as LearnSmart, McGraw-Hill LearnSmart Labs is a must-
see, outcomes-based lab simulation. It assesses a student’s knowledge and adaptively corrects deficiencies, allowing the 
student to learn faster and retain more knowledge with greater success. First, a student’s knowledge is adaptively leveled on 
core learning outcomes: questioning reveals knowledge deficiencies that are corrected by the delivery of content that is 
conditional on a student’s response. Then, a simulated lab experience requires the student to think and act like a scientist: 
recording, interpreting, and analyzing data using simulated equipment found in labs and clinics. The student is allowed to 
make mistakes—a powerful part of the learning experience! A virtual coach provides subtle hints when needed, asks ques-
tions about the student’s choices, and allows the student to reflect on and correct those mistakes. Whether your need is to 
overcome the logistical challenges of a traditional lab, provide better lab prep, improve student performance, or make students’ 
online experience one that rivals the real world, LearnSmart Labs accomplishes it all.

COOPERATIVE CHEMISTRY LABORATORY MANUAL
Prepared by Melanie Cooper of Clemson University, this innovative manual features open-ended problems designed to 
simulate experience in a research lab. Working in groups, students investigate one problem over a period of several weeks, 
so they might complete three or four projects during the semester, rather than one preprogrammed experiment per class. The 
emphasis is on experimental design, analytic problem solving, and communication.

STUDENT SOLUTIONS MANUAL
This supplement, prepared by Mara Vorachek-Warren of St. Charles Community College, contains detailed solutions and 
explanations for all problems in the main text that have colored numbers.
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› exponential (scientific) notation (Appendix A)

Concepts and Skills to Review Before You Study This Chapter

Maybe you’re taking this course because chemistry is funda-
mental to understanding other natural sciences. Maybe it’s 

required for your medical or engineering major. Or maybe you just want to learn more 
about the impact of chemistry on society or even on your everyday life. For example, 
does the following morning routine (described in chemical terms) sound familiar? 
You are awakened by the buzzing of your alarm clock, a sound created when mol-
ecules align in the liquid-crystal display of your clock and electrons flow to create a 
noise. You throw off a thermal insulator of manufactured polymer (blanket) and jump 
in the shower to emulsify fatty substances on your skin and hair with purified water 
and formulated detergents. Next you adorn yourself in an array of pleasant-smelling 
pigmented gels, dyed polymeric fibers, synthetic footwear, and metal-alloy jewelry. 
After a breakfast of nutrient-enriched, spoilage-retarded carbohydrates (cereal) in a 
white emulsion of fats, proteins, and monosaccharides (milk) and a cup of hot aque-
ous extract containing a stimulating alkaloid (coffee), you abrade your teeth with a 
colloidal dispersion of artificially flavored, dental-hardening agents (toothpaste), grab 
your portable electronic device containing ultrathin, microetched semiconductor layers 
powered by a series of voltaic cells (laptop), collect some objects made from pro-
cessed cellulose and plastic, electronically printed with light- and oxygen-resistant 
inks (books), hop in your hydrocarbon-fueled, metal-vinyl-ceramic vehicle, electri-
cally ignite a synchronized series of controlled gaseous explosions (start your car), 
and take off for class!

But the true impact of chemistry extends much farther than the commercial prod-
ucts of daily life. The truth is that the most profound biological and environmental 
questions ultimately have chemical answers: How does an organism reproduce, grow, 
and age? What are the underlying explanations for health and disease? How can we 
sustain a planetary ecosystem in which plant, animal, and human populations thrive? 
Is there life on other worlds?

So, no matter what your reason for studying chemistry, you’re going to learn 
some amazing things. And, this course comes with a bonus for developing two mental 
skills. The first, common to all science courses, is the ability to solve problems sys-
tematically. The second is specific to chemistry, for as you comprehend its ideas, you 
begin to view a hidden reality, one filled with incredibly minute particles moving at 
fantastic speeds, colliding billions of times a second, and interacting in ways that 
allow your brain to translate fluxes of electric charge into thoughts and that determine 
how all the matter inside and outside of you behaves. This chapter holds the keys to 
unlock and enter this new world.

IN THIS CHAPTER . . . We discuss some central ideas about matter and energy, the process 
of science, units of measurement, and how scientists handle data.

› We begin with fundamental concepts about matter and energy and their changes.
› A brief discussion of chemistry’s origins, including some major missteps, leads to an over-

view of how scientists build models to study nature.
› We examine modern units for mass, length, volume, density, and temperature and apply 

systematic chemical problem solving to unit conversions.
› We see that data collection always includes some uncertainty and examine the distinction 

between accuracy and precision.
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4   Chapter 1 • Keys to Studying Chemistry: Definitions, Units, and Problem Solving

 1.1 SOME FUNDAMENTAL DEFINITIONS
A good place to begin our exploration of chemistry is by defining it and a few central 
concepts. Chemistry is the scientific study of matter and its properties, the changes 
that matter undergoes, and the energy associated with those changes. Matter is the 
“stuff” of the universe: air, glass, planets, students—anything that has mass and 
volume. (In Section 1.4, we discuss the meanings of mass and volume in terms of 
how they are measured.) Chemists want to know the composition of matter, the types 
and amounts of simpler substances that make it up. A substance is a type of matter 
that has a defined, fixed composition.

The States of Matter
Matter occurs commonly in three physical forms called states: solid, liquid, and gas. 
On the macroscopic scale, each state of matter is defined by the way the sample fills 
a container (Figure 1.1, flasks at top):

∙ A solid has a fixed shape that does not conform to the container shape. Solids are 
not defined by rigidity or hardness: solid iron is rigid and hard, but solid lead is 
flexible, and solid wax is soft.

∙ A liquid has a varying shape that conforms to the container shape, but only to the 
extent of the liquid’s volume; that is, a liquid has an upper surface.

∙ A gas also has a varying shape that conforms to the container shape, but it fills 
the entire container and, thus, does not have a surface.

On the atomic scale, each state is defined by the relative positions of its particles 
(Figure 1.1, circles at bottom):

∙ In a solid, the particles lie next to each other in a regular, three-dimensional pat-
tern, or array.

∙ In a liquid, the particles also lie close together but move randomly around each 
other.

∙ In a gas, the particles have large distances between them and move randomly 
throughout the container.

Liquid
Particles are close
together but disorganized.

Gas
Particles are far apart
and disorganized.

Solid
Particles are close
together and organized.

Figure 1.1 The physical states of matter.
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The Properties of Matter and Its Changes
We learn about matter by observing its properties, the characteristics that give each 
substance its unique identity. To identify a person, we might observe height, weight, 
hair and eye color, fingerprints, and, now, even DNA pattern, until we arrive at a unique 
identification. To identify a substance, we observe two types of properties, physical and 
chemical, which are closely related to two types of change that matter undergoes.

Physical Change: No Change in Composition Physical properties are characteris-
tics a substance shows by itself, without changing into or interacting with another 
substance. These properties include color, melting point, electrical conductivity, and 
density. A physical change occurs when a substance alters its physical properties, not 
its composition. For example, when ice melts, several physical properties change, such 
as hardness, density, and ability to flow. But the composition of the sample does not 
change: it is still water. The photograph in Figure 1.2A shows what this change looks 
like in everyday life. The “blow-up” circles depict a magnified view of the particles 
making up the sample. In the icicle, the particles lie in the repeating pattern character-
istic of a solid, whereas they are jumbled in the liquid droplet; however,  the particles 
are the same in both states of water. 
Physical change (same substance before and after):

Water (solid state) ⟶ water (liquid state)
All changes of state of matter are physical changes.

Chemical Change: A Change in Composition Chemical properties are charac-
teristics a substance shows as it changes into or interacts with another substance (or 
substances). Chemical properties include flammability, corrosiveness, and reactivity 
with acids. A chemical change, also called a chemical reaction, occurs when one 
or more substances are converted into one or more substances with different compo-
sition and properties. Figure 1.2B shows the chemical change (reaction) that occurs 
when you pass an electric current through water: the water decomposes (breaks down) 
into two other substances, hydrogen and oxygen, that bubble into the tubes. The 
composition has changed: the final sample is no longer water.
Chemical change (different substances before and after):

Water         electric current  hydrogen + oxygen
Let’s work through a sample problem that uses atomic-scale scenes to distinguish 

between physical and chemical change.

Solid water

Liquid water

A Physical change:
Solid state of water becomes liquid state.
Particles before and after remain the same, 
which means composition did not change.

Hydrogen gas

Oxygen gas

B Chemical change:
Electric current decomposes water into di�erent substances
(hydrogen and oxygen). Particles before and after are di�erent, 
which means composition did change. 

Figure 1.2 The distinction between physical and chemical change.
Source: (A) © Paul Morrell/Stone/Getty Images; (B) © McGraw-Hill Education/Stephen Frisch, photographer
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Like water, hydrogen, oxygen, or any other real substance, copper is also identi-
fied by its own set of physical and chemical properties (Table 1.1).

Temperature and Changes in Matter Depending on the temperature and pressure 
of the surroundings, many substances can exist in each of the three physical states 
and undergo changes in state as well. For example, as the temperature increases, solid 
water melts to liquid water, which boils to gaseous water (also called water vapor). 

Problem The scenes below represent an atomic-scale view of a sample of matter, A, 
undergoing two different changes, left to B and right to C:

AB C

Decide whether each depiction shows a physical or a chemical change.
Plan Given depictions of two changes, we have to determine whether each represents a 
physical or a chemical change. The number and colors of the little spheres that make up 
each particle tell its “composition.” Samples with particles of the same composition but 
in a different arrangement depict a physical change, whereas samples with particles of a 
different composition depict a chemical change.
Solution In A, each particle consists of one blue and two red spheres. The particles in 
A change into two types in B, one made of red and blue spheres and the other made of 
two red spheres; therefore, they have undergone a  chemical change  to form different 
particles. The particles in C are the same as those in A, but they are closer together and 
arranged in a regular pattern; therefore, they have undergone a  physical change.
FOLLOW-UP PROBLEMS
Brief Solutions for all Follow-up Problems appear at the end of the chapter.

1.1A Is the following change chemical or physical?

1.1B Is the following change chemical or physical?

SOME SIMILAR PROBLEMS 1.1 and 1.84

SAMPLE PROBLEM 1.1 Visualizing Change on the Atomic Scale
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Similarly, as the temperature drops, water vapor condenses to liquid water, and with 
further cooling, the liquid freezes to ice:

Ice     heating  Liquid water     heating   Water vapor
Ice     cooling  Liquid water     cooling  Water vapor

In a steel plant, solid iron melts to liquid (molten) iron and then cools to the solid 
again. And, far beyond the confines of a laboratory or steel plant, lakes of molten 
sulfur (a solid on Earth at room temperature) lie on Jupiter’s moon Io (see photo), 
which is capped by poles of frozen hydrogen sulfide, a gas on Earth.

The main point is that a physical change caused by heating can generally be 
reversed by cooling. This is not generally true for a chemical change. For example, 
heating iron in moist air causes a chemical reaction that yields the brown, crumbly 
substance known as rust. Cooling does not reverse this change; rather, another chemi-
cal change (or series of them) is required.

The following sample problem provides practice in distinguishing some familiar 
examples of physical and chemical change.

Physical Properties    Chemical Properties

Easily hammered 
into sheets 
(malleable) and 
drawn into wires 
(ductile)

Slowly forms a 
blue-green carbonate  
in moist air

Reacts with nitric or 
sulfuric acid

Slowly forms deep-blue 
solution in aqueous 
ammonia

Can be melted 
and mixed with 
zinc to form brass

Density = 8.95 g/cm3 
Melting point = 1083°C 
Boiling point = 2570°C

Table 1.1 Some Characteristic Properties of Copper

Source: (copper) © McGraw-Hill Education/Mark Dierker, photographer; (candlestick) © Ruth 
Melnick; (copper carbonate, copper reacting with acid, copper and ammonia) © McGraw-Hill 
Education/Stephen Frisch, photographer

Many substances that are common on 
Earth occur in unusual states on other 
worlds.
Source: JPL-NASA

Problem Decide whether each of the following processes is primarily a physical or a 
chemical change, and explain briefly:
(a) Frost forms as the temperature drops on a humid winter night.
(b) A cornstalk grows from a seed that is watered and fertilized.
(c) A match ignites to form ash and a mixture of gases.
(d) Perspiration evaporates when you relax after jogging.
(e) A silver fork tarnishes slowly in air.
Plan The basic question we ask to decide whether a change is chemical or physical is, 
“Does the substance change composition or just change form?”

SAMPLE PROBLEM 1.2 
Distinguishing Between Physical and  
Chemical Change
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The Central Theme in Chemistry
Understanding the properties of a substance and the changes it undergoes 

leads to the central theme in chemistry: macroscopic-scale properties 
and behavior, those we can see, are the results of atomic-scale proper-

ties and behavior that we cannot see. The distinction between chemi-
cal and physical change is defined by composition, which we study 
macroscopically. But composition ultimately depends on the 
makeup of substances at the atomic scale. Similarly, macroscopic 
properties of substances in any of the three states arise from 
atomic-scale behavior of their particles. Picturing a chemical event 
on the molecular scale, even one as common as the flame of a 
laboratory burner (see margin), helps clarify what is taking place. 

What is happening when water boils or copper melts? What events 
occur in the invisible world of minute particles that cause a seed to 

grow, a neon light to glow, or a nail to rust? Throughout the text, we 
return to this central idea:

 We study observable changes in matter to understand their unobserv-
able causes.

The Importance of Energy in the Study of Matter
Physical and chemical changes are accompanied by energy changes. Energy is often 
defined as the ability to do work. Essentially, all work involves moving something. 
Work is done when your arm lifts a book, when a car’s engine moves the wheels, or 
when a falling rock moves the ground as it lands. The object doing the work (arm, 
engine, rock) transfers some of the energy it possesses to the object on which the 
work is done (book, wheels, ground).

The total energy an object possesses is the sum of its potential energy and its 
kinetic energy.

∙ Potential energy is the energy due to the position of the object relative to other 
objects.

∙ Kinetic energy is the energy due to the motion of the object.

Solution (a) Frost forming is a  physical change:  the drop in temperature changes 
water vapor (gaseous water) in humid air to ice crystals (solid water).
(b) A seed growing involves  chemical change:  the seed uses water, substances from air, 
fertilizer, and soil, and energy from sunlight to make complex changes in composition.
(c) The match burning is a  chemical change:  the combustible substances in the match 
head are converted into other substances.
(d) Perspiration evaporating is a  physical change:  the water in sweat changes its state, 
from liquid to gas, but not its composition.
(e) Tarnishing is a  chemical change:  silver changes to silver sulfide by reacting with 
sulfur-containing substances in the air.
FOLLOW-UP PROBLEMS
1.2A Decide whether each of the following processes is primarily a physical or a 
chemical change, and explain briefly:
(a) Purple iodine vapor appears when solid iodine is warmed.
(b) Gasoline fumes are ignited by a spark in an automobile engine’s cylinder.
(c) A scab forms over an open cut.
1.2B Decide whether each of the following processes is primarily a physical or a 
chemical change, and explain briefly:
(a) Clouds form in the sky.
(b) Old milk turns sour.
(c) Butter is melted to use on popcorn.
SOME SIMILAR PROBLEMS 1.6 and 1.7

Methane and oxygen form carbon 
dioxide and water in the flame of a lab 
burner. (Carbon is black, oxygen red, and 
hydrogen blue.)
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Let’s examine four systems that illustrate the relationship between these two forms 
of energy: a weight raised above the ground, two balls attached by a spring, two 
electrically charged particles, and a fuel and its waste products. Two concepts central 
to all these cases are

1. When energy is converted from one form to the other, it is conserved, not destroyed.
2. Situations of lower energy are more stable and are favored over situations of higher 

energy, which are less stable.

The four cases are

∙ A weight raised above the ground (Figure 1.3A). The energy you exert to lift a 
weight against gravity increases the weight’s potential energy (energy due to its 
position). When you drop the weight, that additional potential energy is converted 
to kinetic energy (energy due to motion). The situation with the weight elevated 
and higher in potential energy is less stable, so the weight will fall when released, 
resulting in a situation that is lower in potential energy and more stable.

∙ Two balls attached by a spring (Figure 1.3B). When you pull the balls apart, the 
energy you exert to stretch the relaxed spring increases the system’s potential 
energy. This change in potential energy is converted to kinetic energy when you 
release the balls. The system of balls and spring is less stable (has more potential 
energy) when the spring is stretched than when it is relaxed.

∙ Two electrically charged particles (Figure 1.3C). Due to interactions known as 
electrostatic forces, opposite charges attract each other, and like charges repel each 
other. When energy is exerted to move a positive particle away from a negative 
one, the potential energy of the system increases, and that increase is converted to 

Figure 1.3 Potential energy is converted to kinetic energy. The dashed horizontal lines indicate 
the potential energy of each system before and after the change.
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A A gravitational system. Potential energy is gained when a weight 
is lifted. It is converted to kinetic energy as the weight falls.
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B A system of two balls attached by a spring. Potential energy is gained 
when the spring is stretched. It is converted to the kinetic energy of the 
moving balls as the spring relaxes.
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C A system of oppositely charged particles. Potential energy
is gained when the charges are separated. It is converted to
kinetic energy as the attraction pulls the charges together.
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D A system of fuel and exhaust. A fuel is higher in chemical potential 
energy than the exhaust. As the fuel burns, some of its potential 
energy is converted to the kinetic energy of the moving car.




